Масса кометы. Космические кометы: опасность или вынужденное соседство. Информация о кометах: долгопериодические

Электрика

Кометой называют не очень большое небесное тело, которое перемещается в межгалактическом пространстве, а при сближении с Солнцем, выделяет за собой характерные сгустки газа. По сути, кометы – это переходная ступень к межзвездному веществу, так сказать, остатки формирования Солнечной системы. Сухое испарение льда (сублимации), плазменные процессы и другие разнообразные физические явления, неразрывно связаны с кометами. В отличие от остальных многочисленных небесных тел солнечной системы, о кометах узнали задолго до появления специальных оптических приборов для наблюдения за звездным небом. Об этом свидетельствуют записи древних китайцев, в которых говорится о наблюдениях за кометой Галлея в 240 году до нашей эры.

Даже в наши дни любой астроном-любитель в состоянии наблюдать и даже открыть новую комету. Ведь они могут быть настолько яркими, что привлекут всеобщее внимание. А ведь еще несколько веков назад, появление особенно ярких комет, вызывало у обычных людей панику и страх, а у художников вдохновение.

Так чем же, все-таки кометы, так сильно отличаются от множества других небесных тел? Конечно же, своим характерным светящимся следом (хвостом), который остается за кометой. Он образуется по мере приближения кометы к Солнцу. В основной состав и строение комет входят пыль и замороженный лед с газом, который по мере приближения к Солнцу, начитает нагреваться и испаряться с ее поверхности, в результате чего и остается светящийся след.

Наблюдение за кометой, это не только красивое зрелище, которое завораживает своей красотой, но очень познавательное, с точки зрения науки. Дело в том, что поверхность и ядро кометы, состоит из вещества, которое по неизвестным причинам, не смогло на ранних стадиях развития солнечной системы, вовремя сформироваться в полноценную планету. Поэтому, благодаря изучению комет, ученые могут заглянуть в далекое прошлое и подробно понять механизм формирования планет.

Кометы, как и планеты, подчиняются известным законам тяготения, но движутся, по очень своеобразным траекториям. Если планеты вращаются в одном направлении по круговым орбитам, то кометы – как в прямом, так и в обратном направлении по очень эксцентричным (вытянутым) орбитам, которые наклонены к оси эклиптике. Их разделят на короткопериодические кометы (орбитальный период менее 200 лет) и долгопериодические кометы (более 200 лет). Большинство открытых комет имеют период намного больше 200 лет, и появляются они в нашей солнечной системе очень и очень редко, пропадая потом на многие тысячи или даже миллионы лет. Естественно, что такие кометы существую гораздо дольше комет, которые часто пролетают возле Солнца, а следовательно, постепенно испаряются. Не исключено и пересечение траектории полета кометы с орбитой одной из планет солнечной системы, что неизбежно приводит к столкновениям. В результате таких столкновений и появляются кратеры на Меркурии, Марсе, Луне и других планетах.

Самая знаменитая комета, известная на земле – комета Галлея. Ее появление, наблюдалось уже более 30 раз, начиная с 239 до нашей эры. Естественно, что своим названием, она обязана Э.Галлею, который после ее очередного появления в 1682 рассчитав ее орбиту, предсказал возвращение кометы в 1758. Орбитальный период кометы Галлея составляет 76 лет; последний раз ее можно было наблюдать в 1986, следовательно она появится в 2061.

При ее последнем появлении несколько японских, советских и европейских спутников изучали с близкого расстояния. В результате этого выяснилось, что ядро кометы Галлея имеет овальную форму длиной около 15 км и шириной около 8 км, а ее поверхность, возможно, покрыта слоем органических соединений и по цвету чернее угля.

В отличие от планет кометы движутся по сильно вытянутым орбитам и поэтому бывают видны только в короткие периоды сближений с Солнцем.

Главная составная часть любой кометы - это ее ядро .

Согласно гипотезе известного американского исследователя комет Фреда Лоуренса Уиппла, кометное ядро представляет собой ледяную глыбу, состоящую из смеси замерзшей воды и замороженных газов с вкраплениями тугоплавких каменистых и металлических частиц . Образно говоря, оно похоже на "загрязненный айсберг".

Представим себе, что мы наблюдаем только что открытую комету, которая находится где-то в окрестностях орбиты Юпитера. Увидав в телескоп бледное туманное пятнышко, похожее на шарообразную туманность (такими непривлекательными представляются наблюдателю далекие кометы), мы, возможно, будем поначалу разочарованы. С приближением кометы к Солнцу поток солнечной радиации возрастает. Кометные "льды" начинают интенсивно испаряться. Вокруг ядра образуется обширная светящаяся газовая оболочка - кома. Вместе с ядром она составляет голову кометы.

Кометы (от греческого kometes, - длинноволосый), тела Солнечной системы, движутся по сильно вытянутым орбитам, на значительных расстояниях от Солнца выглядят как слабо светящиеся пятнышки овальной формы, а с приближением к Солнцу у них появляются «голова» и «хвост». Центральная часть головы называется ядром. Диаметр ядра 0,5-20 км, масса 10 11 -10 19 кг, ядро представляет собой ледянистое тело - конгломерат замерзших газов и частиц пыли. Хвост кометы состоит из улетучивающихся из ядра под действием солнечных лучей молекул (ионов) газов и частиц пыли, длина хвоста может достигать десятков млн. км. Наиболее известные периодические кометы - Галлея (период Р=76 лет), Энке (Р=3,3 года), Швассмана - Вахмана (орбита кометы лежит между орбитами Юпитера и Сатурна).

Дальнейшее сближение кометы с Солнцем приводит к тому, что ее голова становится овальной, затем удлиняется и из нее развивается хвост . Именно из-за хвостов, напоминающих порой распущенные волосы, эти небесные тела стали называть кометами. Кометные хвосты обычно направлены в сторону, противоположную Солнцу. Последнее обстоятельство указывает на существование особой силы, исходящей от лучезарного светила и отталкивающей кометное вещество. В начале XX века после опытов выдающегося русского физика П. Н. Лебедева (1866-1912) стало ясно, что это давление солнечного света на молекулы газов и пылинки, выделяющиеся из кометного ядра.

Подсчитано, что на расстоянии от Солнца, равном среднему радиусу земной орбиты (1 а. е.), пылинка размером в 1/5 микрона будет находиться в равновесии, то есть сила притяжения такой пылинки к Солнцу будет уравновешиваться давлением световых лучей. А для частиц меньших размеров лучевое давление преобладает над силой гравитации, и они будут удаляться от Солнца.

В виде исключения встречаются кометы, имеющие помимо хвоста, направленного от Солнца, еще один прямой хвост, обращенный к светилу. Такой необычный хвост наблюдал в 1835 году немецкий астроном Фридрих Бессель (1784-1846) у кометы Галлея. Но наиболее выразительный аномальный хвост был у кометы Когоутека . На него 29 декабря 1973 года обратили внимание американские астронавты, совершавшие полет на орбитальной станции "Скайлэб".

Возникновение аномальных хвостов связано с выбросом из кометных ядер крупных пылевых частиц - размером от 0,1 мм и более значительных. Основное действие на такие частицы оказывает уже не световое давление, а сила гравитации. Устремляясь под ее влиянием к Солнцу, они образуют у кометы необычный, аномальный хвост.

По оценкам ученых, массы кометных ядер могут быть от нескольких тонн у микро-комет до миллиардов, а возможно, и многих триллионов тонн у комет-гигантов. Но чем короче период обращения кометы и, следовательно, чем чаще комета огибает Солнце, тем быстрее подтаивает и "худеет" ее ядро. Фред Л. Уиппл вычислил, что за одно прохождение около Солнца комета может терять путем испарения сотни миллионов тонн летучих веществ и пыли.

В 1908 году наблюдалась комета Морхауза. В ее хвосте были обнаружены частицы вещества, двигавшиеся с очень большими ускорениями. Расчеты показали, что на них действуют силы отталкивания, в тысячу раз превышающие силу притяжения Солнца.

Объяснить это одним световым давлением было невозможно. Пришлось искать другую причину. И такая причина нашлась: виновником оказался солнечный ветер - струи плазмы, непрерывно истекающие из солнечной короны в межпланетное пространство. Открыт этот ветер был уже в наше время с помощью космических аппаратов, но первыми засвидетельствовали его кометы.

Стремительные потоки корпускул солнечного вещества, наталкиваясь на газы и пары в голове кометы, ионизуют их - создают плазму - и уносят кометную плазму на больших скоростях прочь от Солнца. И чем сильнее дует ветер, тем прямее и длиннее у кометы хвост. Но если пылевой хвост светит отраженным солнечным светом, то плазменный флуоресцирует, испускает собственные лучи под воздействием ультрафиолетовой радиации центрального светила.

Для проверки кометных гипотез, и прежде всего гипотезы о ледяном ядре, в Ленинградском физико-техническом институте имени академика А. Ф. Иоффе были проведены опыты с искусственными кометными ядрами. Интересные результаты по моделированию кометных явлений были получены физиками Евгением Алексеевичем Каймаковым и Виктором Ивановичем Шарковым. В вакуумной камере, где создавались условия, близкие к условиям космического пространства, они изучали поведение искусственных кометных ядер. В качестве "ядер" использовался чистый и запыленный лед различного химического состава. Оказалось, что при облучении такого ядра интенсивным светом, похожим на солнечный, на его поверхности может образоваться матрица, или пылевая корочка. Она обладает высокими теплоизоляционными свойствами, что мешает проникновению солнечного тепла в глубь ядра и сублимации кометного вещества - превращению льдов в пар, минуя жидкое состояние.

В отличие от звезд и планет, которые невооруженный глаз воспринимает как светящиеся точки, комета наблюдается в виде удлиненного пятнышка, в котором при внимательном изучении можно разглядеть относительно яркое сгущение - “голову” и конусообразный “хвост”. При помощи телескопа ежегодно обнаруживают 5-10 комет, но редко какая-нибудь из них настолько яркая, что доступна наблюдению невооруженным глазом. Как и планеты, кометы движутся вокруг Солнца. Но в отличие от планетных орбит траектории движения комет обычно сильно вытянутые. Периоды обращений вокруг Солнца заполняют интервал от нескольких лет (комета Энке - 3,28 года) до нескольких тысяч лет (комета Хейла-Боппа - 3000 лет).

Главная составная часть любой кометы - это ее ядро .

Согласно гипотезе известного американского исследователя комет Фреда Лоуренса Уиппла, кометное ядро представляет собой ледяную глыбу, состоящую из смеси замерзшей воды и замороженных газов с вкраплениями тугоплавких каменистых и металлических частиц . Образно говоря, оно похоже на "загрязненный айсберг".

Представим себе, что мы наблюдаем только что открытую комету, которая находится где-то в окрестностях орбиты Юпитера. Увидав в телескоп бледное туманное пятнышко, похожее на шарообразную туманность (такими непривлекательными представляются наблюдателю далекие кометы), мы, возможно, будем поначалу разочарованы. С приближением кометы к Солнцу поток солнечной радиации возрастает. Кометные "льды" начинают интенсивно испаряться. Вокруг ядра образуется обширная светящаяся газовая оболочка - кома. Вместе с ядром она составляет голову кометы.

Кометы (от греческого kometes, - длинноволосый), тела Солнечной системы, движутся по сильно вытянутым орбитам, на значительных расстояниях от Солнца выглядят как слабо светящиеся пятнышки овальной формы, а с приближением к Солнцу у них появляются «голова» и «хвост». Центральная часть головы называется ядром. Диаметр ядра 0,5-20 км, масса 10 11 -10 19 кг, ядро представляет собой ледянистое тело - конгломерат замерзших газов и частиц пыли. Хвост кометы состоит из улетучивающихся из ядра под действием солнечных лучей молекул (ионов) газов и частиц пыли, длина хвоста может достигать десятков млн. км. Наиболее известные периодические кометы - Галлея (период Р=76 лет), Энке (Р=3,3 года), Швассмана - Вахмана (орбита кометы лежит между орбитами Юпитера и Сатурна).

Дальнейшее сближение кометы с Солнцем приводит к тому, что ее голова становится овальной, затем удлиняется и из нее развивается хвост . Именно из-за хвостов, напоминающих порой распущенные волосы, эти небесные тела стали называть кометами. Кометные хвосты обычно направлены в сторону, противоположную Солнцу. Последнее обстоятельство указывает на существование особой силы, исходящей от лучезарного светила и отталкивающей кометное вещество. В начале XX века после опытов выдающегося русского физика П. Н. Лебедева (1866-1912) стало ясно, что это давление солнечного света на молекулы газов и пылинки, выделяющиеся из кометного ядра.

Ядро кометы, из которого выходят струи газа, плазмы и пыли тем более интенсивные, чем ближе к Солнцу подходит комета, представляет собой огромный (от километра до десятков километров в диаметре) снежный ком. Он состоит из молекул, содержащих водород, кислород (например, H 2 O), углерод и азот, а также из пыли, которая улетучивается по мере сублимации льда (то есть при переходе в газообразное состояние под действием излучения Солнца). В ядре имеются и более крупные твердые частицы.

Под действием солнечного светового давления плазма, газ и пыль, истекающие из ядра, образуют хвост длиною в миллионы и десятки миллионов километров, направленный прочь от Солнца (рис.1).

Подсчитано, что на расстоянии от Солнца, равном среднему радиусу земной орбиты (1 а. е.), пылинка размером в 1/5 микрона будет находиться в равновесии, то есть сила притяжения такой пылинки к Солнцу будет уравновешиваться давлением световых лучей. А для частиц меньших размеров лучевое давление преобладает над силой гравитации, и они будут удаляться от Солнца.

В виде исключения встречаются кометы, имеющие помимо хвоста, направленного от Солнца, еще один прямой хвост, обращенный к светилу. Такой необычный хвост наблюдал в 1835 году немецкий астроном Фридрих Бессель (1784-1846) укометы Галлея. Но наиболее выразительный аномальный хвост был у кометы Когоутека . На него 29 декабря 1973 года обратили внимание американские астронавты, совершавшие полет на орбитальной станции "Скайлэб".

Возникновение аномальных хвостов связано с выбросом из кометных ядер крупных пылевых частиц - размером от 0,1 мм и более значительных. Основное действие на такие частицы оказывает уже не световое давление, а сила гравитации. Устремляясь под ее влиянием к Солнцу, они образуют у кометы необычный, аномальный хвост.

По оценкам ученых, массы кометных ядер могут быть от нескольких тонн у микро-комет до миллиардов, а возможно, и многих триллионов тонн у комет-гигантов. Но чем короче период обращения кометы и, следовательно, чем чаще комета огибает Солнце, тем быстрее подтаивает и "худеет" ее ядро. Фред Л. Уиппл вычислил, что за одно прохождение около Солнца комета может терять путем испарения сотни миллионов тонн летучих веществ и пыли.

В 1908 году наблюдалась комета Морхауза. В ее хвосте были обнаружены частицы вещества, двигавшиеся с очень большими ускорениями. Расчеты показали, что на них действуют силы отталкивания, в тысячу раз превышающие силу притяжения Солнца.

Объяснить это одним световым давлением было невозможно. Пришлось искать другую причину. И такая причина нашлась: виновником оказался солнечный ветер - струи плазмы, непрерывно истекающие из солнечной короны в межпланетное пространство. Открыт этот ветер был уже в наше время с помощью космических аппаратов, но первыми засвидетельствовали его кометы.

Стремительные потоки корпускул солнечного вещества, наталкиваясь на газы и пары в голове кометы, ионизуют их - создают плазму - и уносят кометную плазму на больших скоростях прочь от Солнца. И чем сильнее дует ветер, тем прямее и длиннее у кометы хвост. Но если пылевой хвост светит отраженным солнечным светом, то плазменный флуоресцирует, испускает собственные лучи под воздействием ультрафиолетовой радиации центрального светила.

Для проверки кометных гипотез, и прежде всего гипотезы о ледяном ядре, в Ленинградском физико-техническом институте имени академика А. Ф. Иоффе были проведены опыты с искусственными кометными ядрами. Интересные результаты по моделированию кометных явлений были получены физиками Евгением Алексеевичем Каймаковым и Виктором Ивановичем Шарковым. В вакуумной камере, где создавались условия, близкие к условиям космического пространства, они изучали поведение искусственных кометных ядер. В качестве "ядер" использовался чистый и запыленный лед различного химического состава. Оказалось, что при облучении такого ядра интенсивным светом, похожим на солнечный, на его поверхности может образоваться матрица, или пылевая корочка. Она обладает высокими теплоизоляционными свойствами, что мешает проникновению солнечного тепла в глубь ядра и сублимации кометного вещества - превращению льдов в пар, минуя жидкое состояние.

Достаточно крупные пылинки и камешки постепенно распределяются вдоль кометной орбиты. Если она пересекает орбиту Земли, то в определенное время года, когда Земля близка к соответствующей точке пересечения, можно наблюдать множество метеоров (“падающих звезд”). Метеор - это не что иное, как световое явление (на высотах 80 - 120 км), возникающее при вторжении в земную атмосферу метеорного тела - частички бывшей кометы . Частицы настолько малы, что они полностью разрушаются, не успевая достичь поверхности Земли. Они дают знать о себе внезапно появляющейся и быстро исчезающей полоской света. Если такие полоски изобразить на звёздной карте, то окажется, что их линии пересекутся приблизительно в одной и той же точке. Ее называют радиантом метеорного потока , рис.2.

В среднем, после полуночи метеоры наблюдаются в два раза чаще, чем в первой половине ночи. Одно из объяснений состоит в том, что во втором случае явление метеора вызывают метеороиды, догоняющие Землю (при ее движении вокруг Солнца). Относительная скорость частиц при вхождении в атмосферу меньше, чем в том случае, когда они движутся навстречу Земле (так бывает после полуночи). Кроме того, как показывают наблюдения, больше всего метеоров появляется с июля по ноябрь. Методом радиолокации метеоры (а точнее, ионизированный воздух метеорного следа) можно наблюдать и в дневное время. Невооруженным глазом такие метеоры можно было бы заметить только во время полного солнечного затмения.

Метеоры, не уступающие в яркости молодой Луне, называют болидами . Их, в принципе, можно наблюдать в любое время суток, но встречаются они очень редко. Полёт метеорного тела, вызывающего явление болида, в некоторых случаях заканчивается падением метеорита. Чтобы облегчить его поиски, следует засечь максимальную угловую высоту болида над горизонтом и запомнить направление на точку пересечения траектории болида с горизонтом.

Явление болида иногда сопровождается звуковыми эффектами (постепенно затухающий гром, иногда - шелест).

Наиболее яркие болиды обычно связаны с крупными метеороидами, прилетающими из пояса астероидов. Метеоры, не входящие в известные метеорные потоки, называют спорадическими. Ниже приводятся примеры метеорных потоков.

Кассиопеиды . Радиант находится в созвездии Кассиопея. Наибольшая активность приходится на 28 июля.

Существует поверье, что если успеть загадать желание пока наблюдается метеор, то оно обязательно исполнится. Метеор как бы проверяет силу желания. Если экзамен выдержан, то тем самым подтверждается решимость бороться за исполнение желания. Но очень трудно бывает успеть вспомнить и проговорить желание за те доли секунды, пока длится явление метеора.

Галактика и метагалактика. Единство химического состава тел Вселенной и Земли. Гипотезы о происхождении планет Солнечной системы. Достижения науки в изучении и покорении Космоса.

Комета – это небесный туманный объект с характерным ярким ядром-сгустком и светящимся хвостом. Кометы состоят в основном из замёрзших газов, льда и пыли. Поэтому можно сказать, что комета – это такой огромный грязный снежок, летающий в космосе вокруг Солнца по очень вытянутой орбите.

комета Лавджоя, фото сделано на МКС

Откуда берутся кометы?
Большинство комет прилетает к Солнцу из двух мест – пояса Койпера (пояс астероидов за Нептуном) и облака Оорта. Пояс Койпера – это пояс астероидов за орбитой Нептуна, а облако Оорта – это скопление малых небесных тел на границе Солнечной Системы, которое находится дальше всех планет и пояса Койпера.

Как движутся кометы?
Кометы могут провести миллионы лет где-нибудь очень далеко от Солнца, совершенно не скучая среди своих собратьев в облаке Оорта или поясе Койпера. Но однажды, там, в самом дальнем уголке Солнечной системы, две кометы могут случайно пройти рядом друг с другом или даже столкнуться. Иногда после такой встречи одна из комет может начать двигаться в сторону Солнца.

Гравитационное притяжение Солнца будет только ускорять движение кометы. Когда она подлетит достаточно близко к Солнцу, лёд начнёт таять и испаряться. В этот момент у кометы появится хвост, состоящий из пыли и газов, которые комета оставляет за собой. Грязный снежок начинает таять, превращаясь в прекрасного «небесного головастика», - комету.


Судьба кометы зависит от того, по какой орбите она начнёт своё движение. Как известно, все небесные тела, попавшие в поле притяжения Солнца, могут двигаться либо по окружности (что возможно только теоретически), либо по эллипсу (так двигаются все планеты, их спутники, и т.д.) или по гиперболе или параболе. Представьте себе конус, а затем мысленно отрежьте от него кусок. Если резать конус наобум, наверняка выйдет либо замкнутая фигура - эллипс, либо разомкнутая кривая - гипербола. Для того же, чтобы получилась окружность или парабола, нужно, чтобы плоскость сечения была ориентирована строго определённо. Если комета будет двигаться по эллиптической орбите, то это означает, что однажды она вновь вернётся к Солнцу. Если орбитой кометы станет парабола или гипербола, то притяжение нашей звезды не сможет удержать комету, и человечество увидит её лишь раз. Пролетев мимо Солнца, странница отправится прочь из Солнечной системы, на прощанье помахав нам хвостом.

здесь видно, что в самом конце съёмки комета разваливается на несколько частей

Часто бывает так, что кометы не переживают путешествия к Солнцу. Если масса кометы мала, то она может полностью испариться за один пролёт мимо Солнца. Если вещество кометы слишком рыхлое, то сила гравитации нашей звезды может разорвать комету на части. Подобное случалось не раз. Например, в 1992 году комета Шумейкера-Леви, пролетая мимо Юпитера, развалилась более чем на 20 фрагментов. Юпитеру тогда крепко влетело. Обломки кометы врезались в планету, вызвав сильнейшие атмосферные бури. А совсем недавно (ноябрь 2013) Комета ison не выдержала своего первого пролёта мимо Солнца, и её ядро распалось на несколько осколков.

Сколько у кометы хвостов?
У комет бывает несколько хвостов. Это происходит потому, что кометы состоят не только из замёрзших газов и воды, но и из пыли. При движении к Солнцу комету всё время обдувает солнечный ветер – поток заряженных частиц. Он гораздо сильнее воздействует на лёгкие молекулы газа, чем на тяжёлые пылинки. Из-за этого у кометы появляется два хвоста – один пылевой, другой газовый. Газовые хвост всегда направлен точно от Солнца, пылевой немножко закручивается по траектории движения кометы.

Иногда у комет бывает и больше двух хвостов. Например, у кометы может быть и три хвоста, например, если в какой-то момент из ядра кометы быстро выделится большое количество пылинок, они образуют третий хвост, отдельный от первого пылевого и второго газового.

Что будет, если Земля пролетит сквозь хвост кометы?
А ничего не будет. Хвост кометы – это всего лишь газ и пыль, поэтому если Земля пролетит сквозь хвост кометы, то газ и пыль просто столкнутся с земной атмосферой и либо сгорят, либо растворятся в ней. А вот если комета врежется в Землю, то нам всем может прийтись туго.

Кометы – небольшие небесные тела, вращающиеся вокруг Солнца: описание и характеристика с фото, 10 интересных фактов о кометах, список объектов, названия.

В прошлом люди смотрели на прибытие комет с ужасом и боязнью, так как считали, что это предзнаменование смерти, катастроф или божьей кары. Китайские ученые веками собирали данные, отслеживая периодичность прибытия объектов и их траекторию. Эти летописи стали ценными ресурсами для современных астрономов.

Сегодня мы знаем, что кометы выступают остаточным материалом и малыми телами от формирования Солнечной системы 4.6 млрд. лет назад. Они представлены льдом, на котором находится темная корочка органического материала. Из-за этого получили прозвище «грязные снежки». Это ценные объекты для изучения ранней системы. Также они могли стать источником воды и органических соединений – необходимые жизненные компоненты.

В 1951 году Джерард Койпер предположил, что за чертой орбитального пути Нептуна скрывается дискообразный пояс с популяцией темных комет. Эти ледяные объекты периодически выталкиваются на орбиты и становятся короткопериодическими кометами. Тратят на орбиту меньше 200 лет. Сложнее наблюдать за кометами с длинными периодами, длительность орбитального пути которых превышает два века. Такие объекты проживают на территории облака Оорта (на удаленности в 100000 а.е.). На один облет могут потратить до 30 млн. лет.

В каждой комете есть замороженная часть – ядро, которое в протяжности не превышает нескольких километров. Состоит из ледяных осколков, замерзших газов и пылевых частиц. С приближением к Солнцу комета нагревается и формирует кому. Нагрев приводит к тому, что лед сублимируется в газ, поэтому кома расширяется. Иногда она способна охватывать сотни тысяч км. Солнечный ветер и давление могут устранять пыль и газ комы, что приводит к длинному и яркому хвосту. Обычно их два – пылевой и газовый. Ниже представлен список самых известных комет Солнечной системы. Перейдите по ссылке, чтобы изучить описание, характеристику и фото малых тел.

Название Открыта Первооткрыватель Большая полуось Период обращения
21 сентября 2012 года Виталий Невский, Артём Олегович Новичонок, Обсерватория ISON-Кисловодск ? ?
1786 года Пьер Мешен 2.22 а. е. 3,3 г
24 марта 1993 года Юджин и Каролина Шумейкеры, Дэвид Леви 6.86 а. е. 17,99 г
3 апреля 1867 года Эрнст Темпель 3.13 а. е. 5,52 г
28 декабря 1904 года А. Борелли 3.61 а. е. 6,85 г
23 июля 1995 А. Хейл, Т. Бопп 185 а. е. 2534 г
6 января 1978 Пауль Вильд 3.45 а. е. 6,42 г
20 сентября 1969 года Чурюмов, Герасименко 3.51 а. е. 6,568 г
3 января 2013 года Роберт Макнот, обсерватория Сайдинг-Спринг ? 400000 г
20 декабря 1900 года Мишель Джакобини, Эрнст Циннер 3.527 а. е. 6,623 г
5 апреля 1861 года А.Е. Тэтчер 55,6 а. е. 415,0 г
16 июля 1862 года Льюис Свифт, Туттль, Хорас Парнелл 26.316943 а. е. 135,0 г
19 декабря 1865 года Эрнст Темпель и Хорас Туттль 10.337486 а. е. 33,2г
1758 год Наблюдалась в глубокой древности; 2,66795 млрд км 75,3 г
31 октября 2013 года Обсерватория Catalina Sky Survey ? ?
6 июня 2011 года Телескоп Pan-STARRS ? ?

Большая часть комет движется на безопасной отдаленности от Солнца (комета Галлея не подходит ближе 89 млн. км). Но некоторые врезаются прямо в звезду или так сближаются, что испаряются.

Наименование комет

Название кометы может быть сложным. Чаще всего их называют в честь первооткрывателей – человек или космический корабль. Это правило появилось только в 20-м веке. К примеру, комета Шумейкера-Леви 9 названа в честь Юджина и Кэролин Шумейкер и Дэвида Леви. Обязательно прочитайте интересные факты о кометах и информацию, которую нужно знать.

Кометы: 10 вещей, о которых нужно знать

  • Если бы наша звезда Солнце по размеру сопоставлялась с дверью, то Земля напоминала монетку, карликовый Плутон – булавочная головка, а крупнейшая комета пояса Койпера (100 км в ширину) занимала бы диаметр пылинки;
  • Короткопериодические кометы (тратят на орбитальный пролет меньше 200 лет) проживают на ледяной территории пояса Койпера за орбитой Нептуна (30-55 а.е.). При максимальной удаленности комета Галлея расположена в 5.3 млрд. км от Солнца. Долгопериодические кометы (длинные или непредсказуемые орбиты) приближаются из облака Оорта (100 а.е. от Солнца);
  • Один день на комете Галлея длится 2.2-7.4 дней (один осевой оборот). На выполнение одного оборота вокруг Солнца тратит 76 лет;
  • Кометы представляют собою космические снежки с замороженными газами, пылью и камнями;
  • С приближением к Солнцу комета нагревается, создавая атмосферу (кома), способную охватывать в диаметре на сотни тысяч км;
  • У комет нет колец;
  • У комет нет спутников;
  • К кометам отправляли несколько миссий, а Stardust-NExT и Deep Impact EPOXI удалось раздобыть образцы;
  • Кометы не способны поддерживать жизнь, но полагают, что выступают ее источником. В своем составе могут транспортировать воду и органические соединения, которые, возможно, оказались на Земле при столкновении;
  • Комета Галлея отображена в гобелене Байе 1066 года, где рассказывается о падении короля Гарольда от руки Уильяма Завоевателя;